Module parameteriser¶
parameteriser
¶
Classes:
-
MhData–Data log from metaheuristic calibration processes
Functions:
-
add_to_hypercube–Add entries to a hypercube
-
add_transform–Create a parameteriser for which parameter transformations can be defined
-
apply_sys_config–Apply a model configuration to a simulation
-
as_py_structure–Try to convert an external pointer to a native python representation
-
backtransform–Get the parameteriser values in the untransformed space
-
bound_values– -
bound_values_df–min/max bound a column in a data frame
-
concatenate_parameterisers–Concatenate hypercubes to a single parameteriser
-
create_multisite_obj_parameteriser–Builds a parameteriser usable with a multisite multiobjective calculator.
-
create_muskingum_param_constraints–Create a parameteriser with Muskingum-type constraints. Given an existing parameteriser, create a wrapper that adds constraints on two of its parameters.
-
create_parameter_sampler– -
create_parameteriser–Create a SWIFT parameteriser
-
create_sce_optim_swift–Build an SCE optimiser for a SWIFT model
-
create_sce_termination_wila–Create a type of termination criteria suitable for the SCE algorithm.
-
evaluate_score_for_parameters–Computes the value of an objective for a given set of parameters
-
example_parameteriser–Get examples of typical parameterisers
-
execute_optimisation–Launch an optimization task, as defined by the object passed as an argument
-
extract_optimisation_log–Extract the logger from a parameter extimator (optimiser or related)
-
feasible_muskingum_bounds–[summary]
-
filtered_parameters–Wrap a parameteriser in a filter that can hide some parameters
-
get_best_score–Gets the best score in a population for a given objective
-
get_default_sce_parameters–[summary]
-
get_logger_content–Gets logger content on an optimiser, recorded detail of the optimisation process for post-optimisation analysis.
-
get_marginal_termination–Create an termination criterion based on the rate of marginal fitness improvement
-
get_max_iteration_termination–Create an termination criterion based on the number of objective evaluations
-
get_max_runtime_termination–Create an termination criterion based on the wall clock runtime
-
get_score_at_index–Get an objective scores in a vector thereof
-
hide_parameters–Hide some parameters (from the outside e.g. optimisers) in a filter parameteriser
-
is_hypercube–Is the object a native parameteriser that can be cast as a hypercube?
-
is_sampler_seeding–Is the argument a native object that is a seeded candidate parameteriser factory
-
is_score–OBJECTIVE_SCORES_WILA_PTR
-
is_set_of_scores–VEC_OBJECTIVE_SCORES_PTR
-
linear_parameteriser–Create a scaled linear parameteriser, tying by a linear transformation a (resp several) model state to a (resp several) parameter values
-
linear_parameteriser_from–Create a scaled linear parameteriser, tying by a linear transformation a (resp several) model state to a (resp several) parameter values
-
listify– -
make_state_init_parameteriser–[summary]
-
mk_optim_log– -
num_free_parameters– -
parameteriser_as_dataframe–Convert an external object hypercube parameteriser to a pandas data frame
-
parameteriser_for_score–Gets the parameteriser for a score
-
parameters_for– -
scores_as_dataframe–Convert objective scores to a pandas data frame representation
-
set_calibration_logger–Sets logging on an optimiser, so as to record a detail of the optimisation process for post-optimisation analysis.
-
set_hypercube–Set the properties of a hypercube parameteriser
-
set_max_parameter_value–Sets the maximum value of a model parameter value
-
set_min_parameter_value–Sets the minimum value of a model parameter value
-
set_parameter_value–Sets the value of a model parameter value
-
show_parameters–Show some parameters (from the outside e.g. optimisers) in a filter parameteriser
-
sort_by_score–Sort objective scores according to one of the objective values
-
subcatchment_parameteriser–Create a parameteriser that gets applied to a subset of a whole catchment
-
wrap_transform–Create a parameteriser for which parameter transformations can be defined.
Attributes:
-
INTERCEPT_COL– -
MAX_VALUE_COL– -
MIN_VALUE_COL– -
PARAM_NAME_COL– -
SCALING_VAR_NAME_COL– -
STATE_NAME_COL– -
VALUE_COL–
MhData
¶
MhData(data: DataFrame, fitness: str = 'NSE', messages: str = 'Message', categories: str = 'Category')
Data log from metaheuristic calibration processes
Methods:
-
bound_fitness–Return a copy of the log data with the fitness measure bound by min/max limits
-
facet_plot–Facet plot of parameter value evolution, facetted by a category.
-
rename_columns–Rename the columns of the data log according to a mapping.
-
subset_by_message–Subset the log by filtering the 'Message' column by a regexp pattern
-
subset_by_pattern–Subset the log by filtering an attribute by a regexp pattern
Attributes:
-
data(DataFrame) –The inner data of this data log
bound_fitness
¶
Return a copy of the log data with the fitness measure bound by min/max limits
Parameters:
-
obj_lims(Sequence[float], default:None) –min/max limits, length 2. Defaults to None.
Returns:
-
DataFrame–pd.DataFrame: log data with bound fitness
facet_plot
¶
facet_plot(y: str, facet_category: str = 'Message', col_wrap: int = 3, x: str = 'PointNumber', fig_width_in=15, fig_heigth_in=10)
Facet plot of parameter value evolution, facetted by a category.
This method requires the package seaborn to be installed.
Parameters:
-
y(str) –variable name (model parameter) to use for the y-axis, e.g. "x4" for GR4J
-
facet_category(str, default:'Message') –Data attribute to use to facet. Defaults to "Message".
-
col_wrap(int, default:3) –Max number of columns in the plot. Defaults to 3.
-
x(str, default:'PointNumber') –variable name (calibration iteration, or model parameter) to use for the x-axis. Defaults to "PointNumber".
-
fig_width_in(int, default:15) –figure width in inches. Defaults to 15.
-
fig_heigth_in(int, default:10) –figure height in inches. Defaults to 10.
Returns:
-
FacetGrid–The plot to display
rename_columns
¶
Rename the columns of the data log according to a mapping.
This is handy for instance to change fully qualified parameter names such as 'subarea.Wolf_Creek.x1' to just 'x1' to produce more legible plots.
Parameters:
-
colnames_map(Dict[str, str]) –mapping
subset_by_message
¶
subset_by_message(pattern: str = 'Initial.*|Reflec.*|Contrac.*|Add.*') -> MhData
Subset the log by filtering the 'Message' column by a regexp pattern
Parameters:
-
pattern(str, default:'Initial.*|Reflec.*|Contrac.*|Add.*') –regexp pattern, filter definition
Returns:
-
Any(MhData) –New MhData object with subset data
subset_by_pattern
¶
subset_by_pattern(colname: str, pattern: str) -> MhData
Subset the log by filtering an attribute by a regexp pattern
Parameters:
-
colname(str) –column name to filter on
-
pattern(str) –regexp pattern, filter definition
Returns:
-
Any(MhData) –New MhData object with subset data
add_to_hypercube
¶
Add entries to a hypercube
Parameters:
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
-
specs(DataFrame) –An optional data frame description of the parameter set, with at least columns Name, Min, Max, Value.
add_transform
¶
add_transform(parameteriser: TransformParameteriser, param_name: str, inner_param_name: str, transform_id: str, a=1.0, b=0.0)
Create a parameteriser for which parameter transformations can be defined
This allows to define e.g. a virtual parameter log_X instead of calibrating on the parameter X.
Parameters:
-
parameteriser(TransformParameteriser) –A TransformParameteriser wrapper, or a type inheriting from it
-
param_name(str) –the name of the meta-parameter. Note that it can be the same value as inner_param_name, but this is NOT recommended.
-
inner_param_name(str) –the name of the parameter being transformed
-
transform_id(str) –identifier for a known bijective univariate function
-
a(float, default:1.0) –parameter in Y = F(ax+b). Defaults to 1.0.
-
b(float, default:0.0) –parameter in Y = F(ax+b). Defaults to 0.0.
apply_sys_config
¶
Apply a model configuration to a simulation
Parameters:
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
-
simulation(Simulation) –simulation
as_py_structure
¶
Try to convert an external pointer to a native python representation
Parameters:
-
x(Any) –object, presumably wrapper around an Xptr, to convert to a 'pure' python representation
Returns:
-
–
backtransform
¶
Get the parameteriser values in the untransformed space
Get the parameteriser values in the untransformed space, i.e. remove any transform added via wrapTransform. This allows to transform back e.g. from a virtual parameter log_X to the underlying model (or even virtual/meta) parameter X.
Parameters:
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
Returns:
-
–
[HypercubeParameteriser]: The parameters definitions without the transforms (if there are any)
bound_values_df
¶
min/max bound a column in a data frame
Parameters:
-
x([type]) –a data frame
-
colname([type]) –a character vector, name of the column to bound
-
lim([type], default:None) –a num vector of the min/max limits to apply, for instance c(0, 1). Defaults to None.
Returns:
-
–
concatenate_parameterisers
¶
concatenate_parameterisers(*args: Sequence[HypercubeParameteriser], strategy: str = '') -> CompositeParameteriser
Concatenate hypercubes to a single parameteriser
Parameters:
-
strategy(str, default:'') –The strategy to contatenate. Defaults to "", equivalent to "composite", the only available. May have other options in the future.
Returns:
-
CompositeParameteriser(CompositeParameteriser) –A concatenated parameteriser
create_multisite_obj_parameteriser
¶
create_multisite_obj_parameteriser(func_parameterisers, func_identifiers, prefixes=None, mix_func_parameteriser=None, hydro_parameteriser=None)
Builds a parameteriser usable with a multisite multiobjective calculator.
This is an advanced topic; users may refer to this sample workflow
Parameters:
-
func_parameterisers([type]) –list of external pointers, parameterisers for each function of a multiobjective calculation.
-
func_identifiers([type]) –character, identifiers for each of the objectives defined in an multisite objective definition.
-
prefixes([type], default:None) –Optional prefixes to use to disambiguate short parameter names used in each function of a multiobjective calculator.. Defaults to None.
-
mix_func_parameteriser([type], default:None) –parameteriser, default None. (FUTURE) Optional parameteriser used in mixing the multiple objectives.. Defaults to None.
-
hydro_parameteriser([type], default:None) –parameteriser, default None. Optional parameteriser applied to the simulation model.. Defaults to None.
Returns:
-
–
create_muskingum_param_constraints
¶
create_muskingum_param_constraints(inner_parameters, delta_t=1, param_name_k='K', param_name_x='X', simulation=None)
Create a parameteriser with Muskingum-type constraints. Given an existing parameteriser, create a wrapper that adds constraints on two of its parameters.
Parameters:
-
inner_parameters([HypercubeParameteriser]) –A SWIFT parameteriser object.
-
delta_t(int, default:1) –the simulation time step in HOURS. Defaults to 1.
-
param_name_k(str, default:'K') –the variable identifier to use for the delay parameter of the Muskingum routing. Defaults to "K".
-
param_name_x(str, default:'X') –the variable identifier to use for the attenuation parameter of the Muskingum routing. Defaults to "X".
-
simulation([Simulation], default:None) –the model simulation from which link properties are inspected to define constraints. The links' parameters must already be set.. Defaults to None.
Raises:
-
ValueError–[description]
Returns:
-
–
create_parameter_sampler
¶
Parameters:
-
seed([type]) –seed integer, the seed to use for the sampler
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
-
type(str) –identifying a method such as 'urs' for uniform random sampling.
Returns:
-
–
create_parameteriser
¶
Create a SWIFT parameteriser
Parameters:
-
type(str, default:'Generic subareas') –A string identifying the (likely SWIFT-specific) type of parameteriser to use. Recognised types are (case insensitive) 'log-likelihood', 'generic', 'subareas', 'links', 'nodes' and 'muskingum'. Defaults to "Generic subareas".
-
specs(DataFrame, default:None) –An optional data frame description of the parameter set, with at least columns Name, Min, Max, Value. Defaults to None.
Returns:
-
–
[HypercubeParameteriser]: new parameteriser
create_sce_optim_swift
¶
Build an SCE optimiser for a SWIFT model
Parameters:
-
objective(ObjectiveEvaluator) –an objective calculator
-
termination_criterion(SceTerminationCondition) –An object that can be passed to SCE for testing the completion of the algorithm.
-
sce_params(dict) –optional; parameters controlling the behavior of the SCE optimisers.
-
population_initialiser(CandidateFactorySeed) –an S4 object 'ExternalObjRef' [package "cinterop"] with external pointer type HYPERCUBE_PTR or coercible to it, or a type of object that can seed a sampler i.e. coercible to a type CANDIDATE_FACTORY_SEED_WILA_PTR. If the argument is a hypercube, a uniform random sampler is created.
Returns:
-
–
create_sce_termination_wila
¶
create_sce_termination_wila(type: str, arguments: Sequence[str]) -> SceTerminationCondition
Create a type of termination criteria suitable for the SCE algorithm.
Parameters:
-
type(str) –A type of termination criterion; currently at least "relative standard deviation" and "maximum evaluations" are valid options
-
arguments(Sequence[str]) –Arguments, in string forms even for numeric values, options for the selected type.
Returns:
-
SceTerminationCondition(SceTerminationCondition) –[description]
evaluate_score_for_parameters
¶
Computes the value of an objective for a given set of parameters
Parameters:
-
objective([type]) –an objective calculator
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
Returns:
-
–
example_parameteriser
¶
Get examples of typical parameterisers
Parameters:
-
type(str) –identifier for a type of parameteriser including 'log-likelihood'
-
strict(bool, default:False) –If True an error is raised if the type is not found, otherwise a dummy empty parameteriser is returned.. Defaults to False.
Returns:
-
–
execute_optimisation
¶
Launch an optimization task, as defined by the object passed as an argument
Parameters:
-
optimiser(Optimiser) –the instance of the optimiser that has been created for the optimisation task about to be launched.
Returns:
-
–
extract_optimisation_log
¶
extract_optimisation_log(estimator, fitness_name='log.likelihood') -> MhData
Extract the logger from a parameter extimator (optimiser or related)
Parameters:
-
estimator(Optimiser) –the optimiser instance
-
fitness_name(str, default:'log.likelihood') –name of the fitness function to extract. Defaults to "log.likelihood".
Returns:
-
MhData(MhData) –an object with methods to analyse the optimisation log
feasible_muskingum_bounds
¶
feasible_muskingum_bounds(simulation: Simulation, delta_t_hours=1)
[summary]
Parameters:
-
simulation(Simulation) –[description]
-
delta_t_hours(int, default:1) –[description]. Defaults to 1.
Returns:
-
–
filtered_parameters
¶
Wrap a parameteriser in a filter that can hide some parameters
Parameters:
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it. A deep copy of the input is taken.
Returns:
-
–
get_best_score
¶
get_best_score(scores_population, score_name: str = '', convert_to_py: bool = False) -> Dict[str, Any] | ObjectiveScores
Gets the best score in a population for a given objective
Parameters:
-
scores_population([type]) –an S4 object 'ExternalObjRef' [package "cinterop"] with external pointer type VEC_OBJECTIVE_SCORES_PTR
-
score_name(str, default:'') –name of the objective to use for sorting. Defaults to "NSE".
-
convert_to_py(bool, default:False) –should the returned score be converted to an R representation. Default False. Defaults to False.
Returns:
-
Dict[str, Any] | ObjectiveScores–
get_logger_content
¶
Gets logger content on an optimiser, recorded detail of the optimisation process for post-optimisation analysis.
Parameters:
-
optimiser([type]) –the instance of the optimiser that has been created for the optimisation task about to be launched.
-
add_numbering(bool, default:False) –Add an explicit column for numbering the lines of the log. Defaults to False.
Returns:
-
DataFrame–pd.DataFrame: The data log of the optimiser
get_marginal_termination
¶
Create an termination criterion based on the rate of marginal fitness improvement
Parameters:
-
tolerance([type], default:1e-06) –the increment in the objective below which the improvement is considered negligible. Defaults to 1e-06.
-
cutoff_no_improvement(int, default:10) –the maximum number of successive times the algorithm fails to improve the objective function.. Defaults to 10.
-
max_hours(float, default:0.05) –the maximum wall time runtime for the optimisation. Defaults to 0.05.
Returns:
-
–
get_max_iteration_termination
¶
Create an termination criterion based on the number of objective evaluations
Parameters:
-
max_iterations(int, default:1000) –number of iterations, which, if less than total count of optim objective evaluations, defines optim termination.. Defaults to 1000.
Returns:
-
–
get_max_runtime_termination
¶
Create an termination criterion based on the wall clock runtime
Parameters:
-
max_hours(float, default:0.05) –the maximum wall time runtime in hours for the optimisation. Defaults to 0.05.
Returns:
-
–
get_score_at_index
¶
Get an objective scores in a vector thereof
Parameters:
-
scores_population([type]) –an S4 object 'ExternalObjRef' [package "cinterop"] with external pointer type VEC_OBJECTIVE_SCORES_PTR
-
index(int) –one-based index in the population
Returns:
-
–
hide_parameters
¶
Hide some parameters (from the outside e.g. optimisers) in a filter parameteriser
Parameters:
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
-
patterns([type]) –character, one or more pattern to match and hide matching parameters. Match according to other parameters.
-
regex(bool, default:False) –logical, defaults False, should the patterns be used as regular expressions.. Defaults to False.
-
starts_with(bool, default:False) –logical, defaults False. Ignored if regex is True. Should the patterns be used as starting strings in the parameter names.. Defaults to False.
-
strict(bool, default:False) –logical, default False. Used only if regex and starts_with are False. If True, raises an error if one of the "patterns" has no exact match in the parameters.. Defaults to False.
is_hypercube
¶
Is the object a native parameteriser that can be cast as a hypercube?
Parameters:
-
p_set(CffiNativeHandle) –[description]
Returns:
-
–
is_sampler_seeding
¶
Is the argument a native object that is a seeded candidate parameteriser factory
Parameters:
-
obj(CffiNativeHandle) –[description]
Returns:
-
–
is_set_of_scores
¶
VEC_OBJECTIVE_SCORES_PTR
Parameters:
-
x([type]) –[description]
Returns:
-
–
linear_parameteriser
¶
linear_parameteriser(param_name: VecStr, state_name: VecStr, scaling_var_name: VecStr, min_p_val: VecNum, max_p_val: VecNum, value: VecNum, selector_type: str = 'subareas', intercept: VecNum = 0.0)
Create a scaled linear parameteriser, tying by a linear transformation a (resp several) model state to a (resp several) parameter values
This allows to define tied parameters where pval = a * modelStateVal + intercept. The intent in particular is to define virtual model parameters such as initial store value as a fraction of the maximum storage capacity.
Args:
param_name (VecStr): the name of the meta-parameter. Note that it can be the same value as inner_param_name without interference, though this may be confusing a choice.
state_name (VecStr): the name of the model state to modify, based on the value of the meta-parameter and the state found in 'scalingVarName'
scaling_var_name (VecStr): the name of the parameter for each subarea model, to which to apply the area scaled value.
min_p_val (VecNum): minimum value allowed for the meta-parameter
max_p_val (VecNum): minimum value allowed for the meta-parameter
value (VecNum): value for the meta parameter.
selector_type (str, optional): an identifier to define to which catchment element(s) the parameteriser will be applied. Defaults to "subareas".
intercept (VecNum, optional): intercepts in the linear relationship(s). Defaults to 0.0.
Returns:
-
–
[ScalingParameteriser]: new ScalingParameteriser
linear_parameteriser_from
¶
Create a scaled linear parameteriser, tying by a linear transformation a (resp several) model state to a (resp several) parameter values
This allows to define tied parameters where pval = a * modelStateVal + intercept. The intent in particular is to define virtual model parameters such as initial store value as a fraction of the maximum storage capacity. Args: data_frame (pd.DataFrame): data frame with columns "param_name", "state_name", "scaling_var_name", "min_value", "max_value", "value", "intercept", selector_type (str, optional): [description]. Defaults to "subareas".
Returns:
-
–
make_state_init_parameteriser
¶
[summary]
Parameters:
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
Returns:
-
–
[StateInitParameteriser]: new state initialisation parameteriser
mk_optim_log
¶
parameteriser_as_dataframe
¶
Convert an external object hypercube parameteriser to a pandas data frame
Parameters:
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
Returns:
-
–
[type]: [a data frame]
parameteriser_for_score
¶
parameteriser_for_score(score: ObjectiveScores)
Gets the parameteriser for a score
Parameters:
-
score([type]) –[description]
Returns:
-
–
scores_as_dataframe
¶
Convert objective scores to a pandas data frame representation
Parameters:
-
scores_population([type]) –[description]
Returns:
-
–
set_calibration_logger
¶
Sets logging on an optimiser, so as to record a detail of the optimisation process for post-optimisation analysis.
Parameters:
-
optimiser([type]) –[description]
-
type(str, default:'') –[description]. Defaults to "".
Returns:
-
–
set_hypercube
¶
set_hypercube(parameteriser: HypercubeParameteriser, specs: DataFrame)
Set the properties of a hypercube parameteriser
Parameters:
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
-
specs(DataFrame) –An optional data frame description of the parameter set, with at least columns Name, Min, Max, Value.
set_max_parameter_value
¶
Sets the maximum value of a model parameter value
Parameters:
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
-
variable_name(str or iterable of str) –model variable state identifier(s)
-
value(numeric or iterable of numeric) –value(s)
set_min_parameter_value
¶
Sets the minimum value of a model parameter value
Parameters:
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
-
variable_name(str or iterable of str) –model variable state identifier(s)
-
value(numeric or iterable of numeric) –value(s)
set_parameter_value
¶
Sets the value of a model parameter value
Parameters:
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
-
variable_name(str or iterable of str) –model variable state identifier(s)
-
value(numeric or iterable of numeric) –value(s)
show_parameters
¶
Show some parameters (from the outside e.g. optimisers) in a filter parameteriser
Parameters:
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
-
patterns([type]) –character, one or more pattern to match and show matching parameters. Match according to other parameters
-
regex(bool, default:False) –should the patterns be used as regular expressions. Defaults to False.
-
starts_with(bool, default:False) –should the patterns be used as starting strings in the parameter names. Defaults to False.
sort_by_score
¶
sort_by_score(scores_population: VectorObjectiveScores, score_name: str = '')
Sort objective scores according to one of the objective values
Parameters:
-
scores_population(VectorObjectiveScores) –an S4 object 'ExternalObjRef' [package "cinterop"] with external pointer type VEC_OBJECTIVE_SCORES_PTR
-
score_name(str, default:'') –name of the objective to use for sorting. Defaults to "", meaning assume single objective and sort by that.
Returns:
-
VectorObjectiveScores–an S4 object 'ExternalObjRef' [package "cinterop"] with external pointer type VEC_OBJECTIVE_SCORES_PTR
subcatchment_parameteriser
¶
Create a parameteriser that gets applied to a subset of a whole catchment
Parameters:
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
-
subcatchment(Simulation) –the subcatchment, subset of a whole catchment, identifying which elements (subareas, nodes, links) will be parameterised by the new parameteriser. Other catchment elements are untouched.
Returns:
-
–
[HypercubeParameteriser]: New parameteriser whose application is limited to the subcatchment.
Examples:
wrap_transform
¶
Create a parameteriser for which parameter transformations can be defined.
This allows to define e.g. a virtual parameter log_X instead of calibrating on the parameter X.
Parameters:
-
parameteriser(HypercubeParameteriser) –A HypercubeParameteriser wrapper, or a type inheriting from it
Returns:
-
TransformParameteriser–A new parameteriser (TransformParameteriser) which has methods to define parameter transforms