Skip to content

variables

Handling of EFTS netCDF variables definitions.

create_efts_variables

create_efts_variables(
    data_var_def: Dict,
    time_dim_info: Dict,
    num_stations: int,
    lead_length: int,
    ensemble_length: int,
    optional_vars: Optional[DataFrame],
    lead_time_tstep: str,
) -> Dict[str, Any]

Create netCDF variables according to the definition.

Source code in src/efts_io/variables.py
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
def create_efts_variables(
    data_var_def: Dict,
    time_dim_info: Dict,
    num_stations: int,
    lead_length: int,
    ensemble_length: int,
    optional_vars: Optional[pd.DataFrame],
    lead_time_tstep: str,
) -> Dict[str, Any]:
    """Create netCDF variables according to the definition."""
    efts_dims = _create_nc_dims(
        time_dim_info=time_dim_info,
        num_stations=num_stations,
        lead_length=lead_length,
        ensemble_length=ensemble_length,
    )

    time_dim = efts_dims["time_dim"]
    lead_time_dim = efts_dims["lead_time_dim"]
    station_dim = efts_dims["station_dim"]
    str_dim = efts_dims["str_dim"]
    ensemble_dim = efts_dims["ensemble_dim"]

    mandatory_var_ncdefs = create_mandatory_vardefs(
        station_dim,
        str_dim,
        ensemble_dim,
        lead_time_dim,
        lead_time_tstep,
    )
    variables_metadata = mandatory_var_ncdefs
    if optional_vars is not None:
        optional_var_ncdefs = create_optional_vardefs(
            station_dim,
            vars_def=optional_vars,
        )
        # TODO if not native to ncdf4: check name clashes
        # already_defs = names(variables)
        variables_metadata.update(optional_var_ncdefs)

    unknown_dims = [x for x in data_var_def.values() if x["dim_type"] not in ["2", "3", "4"]]
    if len(unknown_dims) > 0:
        raise ValueError(
            f"Invalid dimension specifications for {len(unknown_dims)} variables. Only supported are characters 2, 3, 4",
        )

    variables = {}
    variables["metadatavars"] = variables_metadata

    data_variables = empty_data_variables(data_var_def, time_dim, lead_time_dim, station_dim, ensemble_dim)
    variables["datavars"] = data_variables

    return variables

create_mandatory_vardefs

create_mandatory_vardefs(
    station_dim: Tuple[str, ndarray, Dict[str, str]],
    str_dim: Tuple[str, ndarray, Dict[str, str]],
    ensemble_dim: Tuple[str, ndarray, Dict[str, str]],
    lead_time_dim: Tuple[str, ndarray, Dict[str, str]],
    lead_time_tstep: str = "hours",
) -> Dict[str, Variable]

Create mandatory variable definitions.

Source code in src/efts_io/variables.py
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
def create_mandatory_vardefs(
    station_dim: Tuple[str, np.ndarray, Dict[str, str]],
    str_dim: Tuple[str, np.ndarray, Dict[str, str]],
    ensemble_dim: Tuple[str, np.ndarray, Dict[str, str]],
    lead_time_dim: Tuple[str, np.ndarray, Dict[str, str]],
    lead_time_tstep: str = "hours",
) -> Dict[str, xr.Variable]:
    """Create mandatory variable definitions."""
    # https://github.com/jmp75/efts/blob/107c553045a37e6ef36b2eababf6a299e7883d50/docs/netcdf_for_water_forecasting.md#mandatory-variables
    # float time(time)
    # int station_id(station)
    # char station_name(strLen, station)
    # int ens_member(ens_member)
    # float lead_time(lead_time)
    # float lat (station)
    # float lon (station)

    # STATION_DIMNAME,
    # LEAD_TIME_DIMNAME,
    # TIME_DIMNAME,
    # ENS_MEMBER_DIMNAME,
    # STR_LEN_DIMNAME,

    station_id_variable = xr.Variable(
        dims=[STATION_DIMNAME],
        data=station_dim[1],
        encoding={FILLVALUE_ATTR_KEY: None},
        attrs={
            "longname": station_dim[2]["longname"],
            UNITS_ATTR_KEY: "",
            "missval": None,
            "precision": "integer",
        },
    )
    station_names_dim_variable = xr.Variable(
        dims=[str_dim[0], STATION_DIMNAME],
        # That was not intuitive to create this empty array. Not entirely sure this is what we want.
        data=np.empty_like(
            prototype=b"",
            shape=(len(str_dim[1]), len(station_dim[1])),
            dtype=np.bytes_,
        ),
        encoding={FILLVALUE_ATTR_KEY: None},
        attrs={
            "longname": "station or node name",
            UNITS_ATTR_KEY: "",
            "missval": None,
            "precision": "char",
        },
    )
    ensemble_member_id_variable = xr.Variable(
        dims=[ENS_MEMBER_DIMNAME],
        data=ensemble_dim[1],
        encoding={FILLVALUE_ATTR_KEY: None},
        attrs={
            "longname": ensemble_dim[2]["longname"],
            UNITS_ATTR_KEY: "",
            "missval": None,
            "precision": "integer",
        },
    )
    lead_time_dim_variable = xr.Variable(
        dims=[LEAD_TIME_DIMNAME],
        data=lead_time_dim[1],
        encoding={FILLVALUE_ATTR_KEY: None},
        attrs={
            "longname": lead_time_dim[2]["longname"],
            UNITS_ATTR_KEY: lead_time_tstep + " since time",
            "missval": None,
            "precision": "integer",
        },
    )
    latitude_dim_variable = xr.Variable(
        dims=[STATION_DIMNAME],
        data=np.empty_like(station_dim[1], dtype=float),
        encoding={FILLVALUE_ATTR_KEY: -9999.0},
        attrs={
            "longname": "latitude",
            UNITS_ATTR_KEY: "degrees north",
            "missval": -9999.0,
            "precision": "float",
        },
    )
    longitude_dim_variable = xr.Variable(
        dims=[STATION_DIMNAME],
        data=np.empty_like(station_dim[1], dtype=float),
        encoding={FILLVALUE_ATTR_KEY: -9999.0},
        attrs={
            "longname": "longitude",
            UNITS_ATTR_KEY: "degrees east",
            "missval": -9999.0,
            "precision": "float",
        },
    )

    return {
        "station_ids_var": station_id_variable,
        "station_names_var": station_names_dim_variable,
        "ensemble_var": ensemble_member_id_variable,
        "lead_time_var": lead_time_dim_variable,
        "latitude_var": latitude_dim_variable,
        "longitude_var": longitude_dim_variable,
    }

create_optional_vardefs

create_optional_vardefs(
    station_dim: Tuple[str, ndarray, Dict[str, str]],
    vars_def: Optional[DataFrame] = None,
) -> Series

Create optional variable definitions.

Source code in src/efts_io/variables.py
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
def create_optional_vardefs(
    station_dim: Tuple[str, np.ndarray, Dict[str, str]],
    vars_def: Optional[pd.DataFrame] = None,
) -> pd.Series:
    """Create optional variable definitions."""
    if vars_def is None:
        vars_def = default_optional_variable_definitions_v2_0()

    # https://github.com/jmp75/efts/blob/107c553045a37e6ef36b2eababf6a299e7883d50/docs/netcdf_for_water_forecasting.md#mandatory-variables
    # vars_def$rownum = 1:nrow(vars_def)
    def f(vd: Dict):  # noqa: ANN202
        return {
            "name": vd["name"],
            UNITS_ATTR_KEY: vd[UNITS_ATTR_KEY],
            "dim": list(station_dim[0]), # TOCHECK or not a list but the str?
            "missval": vd["missval"],
            "longname": vd["longname"],
            "prec": vd["precision"],
        }

    return vars_def.apply(lambda x: f(x), axis=1)

create_variable_definition

create_variable_definition(
    name: str,
    longname: str = "",
    units: str = "mm",
    missval: float = -9999.0,
    precision: str = "double",
    dim_type: str = "4",
    var_attribute: Optional[dict[str, str]] = None,
) -> dict[str, Any]

Create a variable definition.

Source code in src/efts_io/variables.py
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
def create_variable_definition(
    name: str,
    longname: str = "",
    units: str = "mm",
    missval: float = -9999.0,
    precision: str = "double",
    dim_type: str = "4",
    var_attribute: Optional[dict[str,str]] = None,
) -> dict[str, Any]:
    """Create a variable definition."""
    if var_attribute is None:
        var_attribute = create_var_attribute_definition()
    return {
        "name": name,
        "longname": longname,
        UNITS_ATTR_KEY: units,
        "dim_type": dim_type,
        "missval": missval,
        "precision": precision,
        "attributes": var_attribute,
    }

create_variable_definitions

create_variable_definitions(
    dframe: DataFrame,
) -> Dict[str, Any]

Create variable definitions from a data frame.

Source code in src/efts_io/variables.py
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def create_variable_definitions(dframe: pd.DataFrame) -> Dict[str, Any]:
    """Create variable definitions from a data frame."""
    in_names = dframe.columns
    non_opt_attr = ["name", "longname", UNITS_ATTR_KEY, "missval", "precision", "dimensions"]
    varargs_attr = [x for x in in_names if x not in non_opt_attr]

    def dataframe_to_dict(df: pd.DataFrame, columns: list) -> dict:
        """Convert a single-row DataFrame to a dictionary for specified columns."""
        if not isinstance(df, pd.Series):
            raise TypeError("single row of a data frame: expected a pandas series")
        return {col: df[col] for col in columns if col in df}

    def f(var_def: Dict[str, Any]):  # noqa: ANN202
        return create_variable_definition(
            name=var_def["name"],
            longname=var_def["longname"],
            units=var_def[UNITS_ATTR_KEY],
            missval=var_def["missval"],
            precision=var_def["precision"],
            dim_type=var_def["dimensions"],
            var_attribute=dataframe_to_dict(var_def, varargs_attr),
        )

    # dframe[['rownum']] = 1:nrow(dframe)
    # r = plyr::dlply(.data = dframe, .variables = "rownum", .fun = f)
    variables_defs: Dict = dframe.apply(lambda x: f(x), axis=1).to_dict()
    return {v["name"]: v for _, v in variables_defs.items()}

default_optional_variable_definitions_v2_0

default_optional_variable_definitions_v2_0() -> DataFrame

Provide a template definition of optional geolocation variables.

Source code in src/efts_io/variables.py
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def default_optional_variable_definitions_v2_0() -> pd.DataFrame:
    """Provide a template definition of optional geolocation variables."""
    return pd.DataFrame.from_dict(
        {
            "name": ["x", "y", AREA_VARNAME, "elevation"],
            "longname": [
                "easting from the GDA94 datum in MGA Zone 55",
                "northing from the GDA94 datum in MGA Zone 55",
                "catchment area",
                "station elevation above sea level",
            ],
            STANDARD_NAME_ATTR_KEY: [
                "northing_GDA94_zone55",
                "easting_GDA94_zone55",
                AREA_VARNAME,
                "elevation",
            ],
            UNITS_ATTR_KEY: ["", "", "km^2", "m"],
            "missval": [np.nan, np.nan, -9999.0, -9999.0],
            "precision": np.repeat("float", 4),
        },
    )

empty_data_variables

empty_data_variables(
    data_var_def: dict,
    time_dim_tmp: Tuple[str, ndarray, Dict[str, str]],
    lead_time_dim_tmp: Tuple[str, ndarray, Dict[str, str]],
    station_dim_tmp: Tuple[str, ndarray, Dict[str, str]],
    ensemble_dim_tmp: Tuple[str, ndarray, Dict[str, str]],
) -> dict

Create data variables as defined in the definition.

Source code in src/efts_io/variables.py
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
def empty_data_variables(
    data_var_def: dict,
    time_dim_tmp: Tuple[str, np.ndarray, Dict[str, str]],  # noqa: ARG001
    lead_time_dim_tmp: Tuple[str, np.ndarray, Dict[str, str]],  # noqa: ARG001
    station_dim_tmp: Tuple[str, np.ndarray, Dict[str, str]],  # noqa: ARG001
    ensemble_dim_tmp: Tuple[str, np.ndarray, Dict[str, str]],  # noqa: ARG001
) -> dict:
    """Create data variables as defined in the definition."""
    raise NotImplementedError("Not implemented yet")

    data_variables = {}

    ens_fcast_data_var_def = [x for x in data_var_def.values() if x["dim_type"] == "4"]
    ens_data_var_def = [x for x in data_var_def.values() if x["dim_type"] == "3"]
    point_data_var_def = [x for x in data_var_def.values() if x["dim_type"] == "2"]

    time_dim = "not implemented"
    lead_time_dim = "not implemented"
    station_dim = "not implemented"
    ensemble_dim = "not implemented"

    data_variables.update(
        {
            x["name"]: create_data_variable(
                x,
                [lead_time_dim, station_dim, ensemble_dim, time_dim],
            )
            for x in ens_fcast_data_var_def
        },
    )
    data_variables.update(
        {x["name"]: create_data_variable(x, [station_dim, ensemble_dim, time_dim]) for x in ens_data_var_def},
    )
    data_variables.update(
        {x["name"]: create_data_variable(x, [station_dim, time_dim]) for x in point_data_var_def},
    )

    return data_variables